Acetaldehyde alters Ca2+-release channel gating and muscle contraction in a dose-dependent manner.
نویسندگان
چکیده
We studied whether acetaldehyde, which is produced by alcohol consumption, impacts ryanodine receptor (RyR) activity and muscle force. Exposure to approximately 50-200 microM acetaldehyde enhanced channel activity of frog RyR and rabbit RyR1 incorporated into lipid bilayers. An increase in acetaldehyde to 1 mM modified channel activity in a time-dependent manner, with a brief activation and then inhibition. Application of 200 microM acetaldehyde to frog fibers increased twitch tension. The maximum rate of rise of tetanus tension was accelerated to 1.5 and 1.74 times the control rate on exposure of fibers to 50 and 200 microM acetaldehyde, respectively. Fluorescence monitoring with fluo 3 demonstrated that 200-400 microM acetaldehyde induced Ca(2+) release from the sarcoplasmic reticulum (SR) in frog muscles. Acetaldehyde at 1 mM inhibited twitch tension by approximately 12%, with an increased relaxation time after a small, transient twitch potentiation. These results suggest that moderate concentrations of acetaldehyde can elicit Ca(2+) release from the SR by increasing the open probability of the RyR channel, resulting in increased tension. However, the effects of acetaldehyde at clinical doses (1-30 microM) are unlikely to mediate alcohol-induced acute muscle dysfunction.
منابع مشابه
Acetaldehyde alters Ca -release channel gating and muscle contraction in a dose-dependent manner
Oba, Toshiharu, and Yoshitaka Maeno. Acetaldehyde alters Ca -release channel gating and muscle contraction in a dose-dependent manner. Am J Physiol Cell Physiol 286: C1188–C1194, 2004. First published December 30, 2003; 10.1152/ajpcell.00388.2003.— We studied whether acetaldehyde, which is produced by alcohol consumption, impacts ryanodine receptor (RyR) activity and muscle force. Exposure to 5...
متن کاملCalmodulin modulation of single sarcoplasmic reticulum Ca2+-release channels from cardiac and skeletal muscle.
Sarcoplasmic reticulum (SR) contains a Ca2+-conducting channel that is believed to play a central role in excitation-contraction coupling by releasing the Ca2+ necessary for muscle contraction. The effects of calmodulin on single cardiac and skeletal muscle SR Ca2+-release channels were studied using the planar lipid bilayer-vesicle fusion technique. Calmodulin inhibited Ca2+-release channel op...
متن کاملEffects of azumolene on Ca2+ sparks in skeletal muscle fibers.
Azumolene is an analog of dantrolene, the only approved medicine for treatment of malignant hyperthermia (MH). The pharmacological mechanism of these drugs is to inhibit skeletal muscle sarcoplasmic reticulum (SR) Ca2+ release by modulating the activity of the SR ryanodine receptor (RyR) Ca2+ release channel. To investigate the effects of azumolene on SR Ca2+ channel gating within skeletal musc...
متن کاملCoupled gating between individual skeletal muscle Ca2+ release channels (ryanodine receptors)
Excitation-contraction coupling in skeletal muscle requires the release of intracellular calcium ions (Ca2+) through ryanodine receptor (RyR1) channels in the sarcoplasmic reticulum. Half of the RyR1 channels are activated by voltage-dependent Ca2+ channels in the plasma membrane. In planar lipid bilayers, RyR1 channels exhibited simultaneous openings and closings, termed "coupled gating." Addi...
متن کاملEffects of Bunium persicum (Boiss.) Essential Oil on the Contractile Responses of Smooth Muscle (An in vitro Study)
Bunium persicum (Boiss.) is an economically important medicinal plant growing wild in arid regions in Iran. The essential oil of B. persicum (EOBP) was extracted using hydrodistillation. A total of eighteen compounds, representing 96.14 % of the oil was identified by gas chromatography/mass spectrometry (GC/MS).The main compounds were cuminaldehyde (23.04 %), gamma-terpinene (14.48 %), trans-3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 286 5 شماره
صفحات -
تاریخ انتشار 2004